Hopf Structures on Ambiskew Polynomial Rings
نویسنده
چکیده
We derive necessary and sufficient conditions for an ambiskew polynomial ring to have a Hopf algebra structure of a certain type. This construction generalizes many known Hopf algebras, for example U(sl2), Uq(sl2) and the enveloping algebra of the 3-dimensional Heisenberg Lie algebra. In a torsion-free case we describe the finite-dimensional simple modules, in particular their dimensions and prove a Clebsch-Gordan decomposition theorem for the tensor product of two simple modules. We construct a Casimir type operator and prove that any finite-dimensional weight module is semisimple.
منابع مشابه
Generalized Weyl algebras and diskew polynomial rings
The aim of the paper is to extend the class of generalized Weyl algebras to a larger class of rings (they are also called generalized Weyl algebras) that are determined by two ring endomorphisms rather than one as in the case of ‘old’ GWAs. A new class of rings, the diskew polynomial rings, is introduced that is closely related to GWAs (they are GWAs under a mild condition). The, so-called, amb...
متن کاملPolynomial invariants for a semisimple and cosemisimple Hopf algebra of finite dimension Dedicated to Professor Noriaki Kawanaka on the occasion of his 60th birthday
We introduce new polynomial invariants of a finite-dimensional semisimple and cosemisimple Hopf algebra A over a field k by using the braiding structures of A. We investigate basic properties of the polynomial invariants including stability under extension of the base field. Furthermore, we show that our polynomial invariants are indeed tensor invariants of the representation category of A, and...
متن کاملOn strongly J-clean rings associated with polynomial identity g(x) = 0
In this paper, we introduce the new notion of strongly J-clean rings associated with polynomial identity g(x) = 0, as a generalization of strongly J-clean rings. We denote strongly J-clean rings associated with polynomial identity g(x) = 0 by strongly g(x)-J-clean rings. Next, we investigate some properties of strongly g(x)-J-clean.
متن کاملHopf Galois structures on Kummer extensions of prime power degree
Let K be a field of characteristic not p (an odd prime), containing a primitive p-th root of unity ζ, and let L = K[z] with x n − a the minimal polynomial of z over K: thus L|K is a Kummer extension, with cyclic Galois group G = 〈σ〉 acting on L via σ(z) = ζz. T. Kohl, 1998, showed that L|K has pn−1 Hopf Galois structures. In this paper we describe these Hopf Galois structures.
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کامل